Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 63, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481317

RESUMO

BACKGROUND: Obligate blood-feeding insects obtain the nutrients and water necessary to ensure survival from the vertebrate blood. The internal taste sensilla, situated in the pharynx, evaluate the suitability of the ingested food. Here, through multiple approaches, we characterized the pharyngeal organ (PO) of the hematophagous kissing bug Rhodnius prolixus to determine its role in food assessment. The PO, located antero-dorsally in the pharynx, comprises eight taste sensilla that become bathed with the incoming blood. RESULTS: We showed that these taste sensilla house gustatory receptor neurons projecting their axons through the labral nerves to reach the subesophageal zone in the brain. We found that these neurons are electrically activated by relevant appetitive and aversive gustatory stimuli such as NaCl, ATP, and caffeine. Using RNA-Seq, we examined the expression of sensory-related gene families in the PO. We identified gustatory receptors, ionotropic receptors, transient receptor potential channels, pickpocket channels, opsins, takeouts, neuropeptide precursors, neuropeptide receptors, and biogenic amine receptors. RNA interference assays demonstrated that the salt-related pickpocket channel Rproppk014276 is required during feeding of an appetitive solution of NaCl and ATP. CONCLUSIONS: We provide evidence of the role of the pharyngeal organ in food evaluation. This work shows a comprehensive characterization of a pharyngeal taste organ in a hematophagous insect.


Assuntos
Cloreto de Sódio , Paladar , Animais , Paladar/fisiologia , Cloreto de Sódio/farmacologia , Faringe , Insetos , Trifosfato de Adenosina
2.
J Chem Ecol ; 50(3-4): 143-151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366062

RESUMO

Chemical repellents play a crucial role in personal protection, serving as essential elements in reducing the transmission of vector-borne diseases. A biorational perspective that extends beyond the olfactory system as the classical target may be a promising direction to move. The taste system provides reliable information regarding food quality, helping animals to discriminate between nutritious and potentially harmful food sources, often associated with a bitter taste. Understanding how bitter compounds affect feeding in blood-sucking insects could unveil novel molecules with the potential to reduce biting and feeding. Here, we investigated the impact of two naturally occurring bitter compounds, caffeine and quinine, on the feeding decisions in female Aedes aegypti mosquitoes at two distinctive phases: (1) when the mosquito explores the biting substrate using external taste sensors and (2) when the mosquito takes a sip of food and tastes it using internal taste receptors. We assessed the aversiveness of bitter compounds through both an artificial feeding condition (artificial feeder test) and a real host (arm-in-cage test). Our findings revealed different sensitivities in the external and internal sensory pathways responsible for detecting bitter taste in Ae. aegypti. Internal detectors exhibited responsiveness to lower doses compared to the external sensors. Quinine exerted a more pronounced negative impact on biting and feeding activity than caffeine. The implications of our findings are discussed in the context of mosquito food recognition and the potential practical implications for personal protection.


Assuntos
Aedes , Cafeína , Comportamento Alimentar , Quinina , Paladar , Animais , Feminino , Cafeína/farmacologia , Aedes/fisiologia , Comportamento Alimentar/efeitos dos fármacos
3.
Curr Opin Insect Sci ; 59: 101101, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595884

RESUMO

Triatomines are vectors of Chagas disease. Due to failures in their control, there is an urgent need for more efficient and environmentally friendly monitoring and control tools. These hematophagous insects rely heavily on chemical information from the environment to detect hosts and cues/signals from conspecifics. Chemical ecology includes the elucidation of the functional role of chemicals mediating interactions between organisms. Studies on the chemical ecology of triatomines are leading to novel methods for their monitor and control. Thus, laboratory tests to develop chemical attractants and repellents are promissory and have led to the design of, for example, efficient baited traps. However, the monitoring and control tools proposed until now have not been as effective in the field.


Assuntos
Doença de Chagas , Animais , Ecologia , Comportamento Alimentar
4.
iScience ; 25(7): 104502, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35720264

RESUMO

Salts are essential nutrients required for many physiological processes, and accordingly, their composition and concentration are tightly regulated. Taste is the ultimate sensory modality involved in resource quality assessment, resulting in acceptance or rejection. Here we found that high salt concentrations elicit feeding avoidance in the blood-sucking bug Rhodnius prolixus and elucidate the molecular and neurophysiological mechanisms involved. We found that high-salt avoidance is mediated by a salt-sensitive antennal gustatory receptor neuron (GRN). Using RNAi, we demonstrate that this process requires two amiloride-sensitive pickpocket channels (PPKs; Rpro PPK014276 and Rpro PPK28) expressed within these cells. We found that antennal GRNs project to the insect primary olfactory center, the antennal lobes, revealing these centers as potential sites for the integration of taste and olfactory host-derived cues. Moreover, the identification of the gustatory basis of high-salt detection in a hematophagous insect suggests novel targets for the prevention of biting and feeding.

5.
J Insect Physiol ; 136: 104346, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896372

RESUMO

Many hematophagous insects acquire medical and veterinary relevance because they transmit disease causing pathogens to humans. Hematophagy is only fulfilled once a blood feeder successfully locates a vertebrate host by means of fine sensory systems. In nature, blood-sucking insects can exploit environments with differential association with their hosts. Given the relevance of the sensory systems during host searching, we review the current state of knowledge of the sensory machinery of four blood-sucking insects: human lice, bed bugs, kissing bugs and mosquitoes. Each one is representative of highly anthropophilic behaviours and a different degree of association with human hosts. We compare the number, arrangement and functional type of cuticular sensory structures dispersed on the main sensory organs. We also compare the genetic machinery potentially involved in the detection of host stimuli. Finally, we discuss the sensory diversity of the insects studied here.


Assuntos
Culicidae , Ingestão de Alimentos , Animais , Comportamento Alimentar , Insetos
6.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390578

RESUMO

Insect pickpocket (PPK) receptors mediate diverse functions, among them the detection of mechano- and chemo-sensory stimuli. Notwithstanding their relevance, studies on their evolution only focused on Drosophila. We have analyzed the genomes of 26 species of eight orders including holometabolous and hemimetabolous insects (Blattodea, Orthoptera, Hemiptera, Phthiraptera, Hymenoptera, Lepidoptera, Coleoptera, and Diptera), to characterize the evolution of this gene family. PPKs were detected in all genomes analyzed, with 578 genes distributed in seven subfamilies. According to our phylogeny, ppk17 is the most divergent member, composing the new subfamily VII. PPKs evolved under a gene birth-and-death model that generated lineage-specific expansions usually located in clusters, while purifying selection affected several orthogroups. Subfamily V was the largest, including a mosquito-specific expansion that can be considered a new target for pest control. PPKs present a high gene turnover generating considerable variation. On one hand, Musca domestica (59), Aedes albopictus (51), Culex quinquefasciatus (48), and Blattella germanica (41) presented the largest PPK repertoires. On the other hand, Pediculus humanus (only ppk17), bees, and ants (6-9) had the smallest PPK sets. A subset of prevalent PPKs was identified, indicating very conserved functions for these receptors. Finally, at least 20% of the sequences presented calmodulin-binding motifs, suggesting that these PPKs may amplify sensory responses similarly as proposed for Drosophila melanogaster ppk25. Overall, this work characterized the evolutionary history of these receptors revealing relevant unknown gene sequence features and clade-specific expansions.


Assuntos
Drosophila melanogaster , Evolução Molecular , Animais , Abelhas/genética , Drosophila melanogaster/genética , Genes de Insetos , Insetos/genética , Filogenia
7.
Arthropod Struct Dev ; 59: 100996, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33075667

RESUMO

Head lice are exclusive human parasitic blood-sucking insects. Distributed worldwide among school-age children, this parasitosis generates scalp irritation and sometimes social prejudice. Understanding how head lice detect and perceive their human hosts is crucial to control transmission. Here, we describe the sensory structures present on the mouthparts of Pediculus humanus capitis and their possible contribution to the feeding decision-making process. On the anterior zone of the clypeus around the haustellum two morphological types of sensilla, invariable in location and number, were identified: fourteen short clypeus bristles (SCB) and six long clypeus bristles (LCB). During feeding these structures contact the host skin but not its blood. Located antero-dorsally on the everted haustellum and between the epipharyngeal teeth, a third sensillar type was identified: about four short peg epipharyngeal (SPE) sensilla. These structures are bathed with the incoming blood, when head lice feed, so may have a gustatory role. In behavioural experiments antennectomy of lice did not interfere with feeding behaviour, suggesting that the sensory structures on the mouthparts could be involved in host assessment.


Assuntos
Pediculus/ultraestrutura , Sensilas/ultraestrutura , Animais , Comportamento Alimentar , Microscopia Eletrônica de Varredura , Boca/ultraestrutura , Pediculus/fisiologia
8.
Sci Rep ; 10(1): 9443, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523008

RESUMO

The sense of taste provides information about the "good" or "bad" quality of a food source, which may be potentially nutritious or toxic. Most alkaloids taste bitter to humans, and because bitter taste is synonymous of noxious food, they are generally rejected. This response may be due to an innate low palatability or due to a malaise that occurs after food ingestion, which could even lead to death. We investigated in the kissing bug Rhodnius prolixus, whether alkaloids such as quinine, caffeine and theophylline, are merely distasteful, or if anti-appetitive responses are caused by a post-ingestion physiological effect, or both of these options. Although anti-appetitive responses were observed for the three alkaloids, only caffeine and theophylline affect metabolic and respiratory parameters that reflected an underlying physiological stress following their ingestion. Furthermore, caffeine caused the highest mortality. In contrast, quinine appears to be a merely unpalatable compound. The sense of taste helps insects to avoid making wrong feeding decisions, such as the intake of bitter/toxic foods, and thus avoid potentially harmful effects on health, a mechanism preserved in obligate hematophagous insects.


Assuntos
Comportamento Alimentar/fisiologia , Rhodnius/metabolismo , Paladar/fisiologia , Alcaloides/química , Alcaloides/metabolismo , Animais , Cafeína/metabolismo , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Insetos , Quinina/metabolismo , Reduviidae/metabolismo , Rhodnius/fisiologia
9.
Eur J Neurosci ; 51(9): 1867-1880, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32048391

RESUMO

Sensory aversion is essential for avoiding prospective dangers. We studied the chemical perception of aversive compounds of different gustatory modalities (salty, bitter) in the haematophagous bug, Rhodnius prolixus. Over a walking arena, insects avoided a substrate embedded with 1M NaCl or KCl if provided with water as an alternative. However, no preferences were expressed when both salts were opposed to each other. A pre-exposure to amiloride interfered with the repellency of NaCl and KCl equally, suggesting that amiloride-sensitive receptors are involved in the detection of both salts. Discriminative experiments were then performed to determine whether R. prolixus can distinguish between these salts. An aversive operant conditioning involving either NaCl or KCl modulated the repellency of the conditioned salt, but also of the novel salt. Repellency levels of both salts were rigid to a chemical pre-exposure to any of both salts. When gustatory modalities were crossed by presenting as a choice NaCl and a bitter molecule as caffeine (Caf), no innate preferences were expressed. Aversive operant conditionings with either NaCl or Caf rendered unspecific changes in the repellency of both compounds. A chemical pre-exposure to Caf modulated the response to Caf but not to NaCl, suggesting the existence of two independent neural pathways for the detection of salts and bitter compounds. Overall results suggest that R. prolixus cannot discriminate molecules of the same gustatory modality (i.e. salty), but can distinguish between salty and bitter tastes. The potential use of aversive gustatory stimuli as a complement of commercially available olfactory repellents is discussed.


Assuntos
Cloreto de Sódio , Paladar , Animais , Insetos , Percepção , Estudos Prospectivos
11.
Curr Opin Insect Sci ; 34: 55-60, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247418

RESUMO

Hematophagous insects use heat, odors, visual cues and humidity emitted by vertebrate hosts to find them in space and time. Once they reach a host, they integrate multimodal information from its skin, and decide whether to bite or not. If skin conditions fulfil the insect's expectations, it bites and pumps a small quantity of blood. Again, only if the sampled blood fulfils the insect's feeding requirements, it continues with a full ingestion. Taste is involved in both timely linked evaluation processes via contact chemoreceptors located in different parts of their bodies, driving jointly food acceptance or rejection. However, the whole picture of how blood-sucking insects evaluate the quality of a potential host is poorly understood. Here, I summarize the actual knowledge about the feeding decision-making in blood-sucking insects. Being typically involved in the transmission of diseases to humans or livestock, a deeper understanding about factors affecting an essential process as feeding in these insects could help us to find new strategies to reduce interactions.


Assuntos
Insetos/fisiologia , Sensilas/fisiologia , Paladar , Animais , Sangue , Comportamento Alimentar
12.
Front Physiol ; 10: 434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057423

RESUMO

Insect antennae are sophisticated sensory organs, usually covered with sensory structures responsible for the detection of relevant signals of different modalities coming from the environment. Despite the relevance of the head louse Pediculus humanus capitis as a human parasite, the role of its antennal sensory system in the highly dependent relation established with their hosts has been barely studied. In this work, we present a functional description of the antennae of these hematophagous insects by applying different approaches, including scanning electron microscopy (SEM), anterograde antennal fluorescent backfills, and behavioral experiments with intact or differentially antennectomized lice. Results constitute a first approach to identify and describe the head louse antennal sensilla and to determine the role of the antenna in host recognition. SEM images allowed us to identify a total of 35-40 sensilla belonging to seven different morphological types that according to their external architecture are candidates to bear mechano-, thermo-, hygro-, or chemo-receptor functions. The anterograde backfills revealed a direct neural pathway to the ipsilateral antennal lobe, which includes 8-10 glomerular-like diffuse structures. In the two-choice behavioral experiments, intact lice chose scalp chemicals and warm surfaces (i.e., 32°C) and avoided wet substrates. Behavioral preferences disappeared after ablation of the different flagellomeres of their antenna, allowing us to discuss about the location and function of the different identified sensilla. This is the first study that integrates morphological and behavioral aspects of the sensory machinery of head lice involved in host perception.

13.
Sci Rep ; 9(1): 4946, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894616

RESUMO

After an insect herbivore has reached its host plant, contact cues from the leaf surface often determine host acceptance. We studied contact cues during oviposition behavior of a willow pest, the sawfly Nematus oligospilus (Hymenoptera: Tenthredinidae), a specialist feeder on Salix (Salicaceae) trees, and how it determines oviposition preference in lab and field conditions. We described the sequence of behaviors that lead to egg laying on the most and least preferred willow species. Then we studied the morphology of chemosensory structures present on the female antenna, cerci and ovipositor. Since phenolic glycosides (PGs) are the main secondary metabolites present in Salicaceae species, we investigated their role in host acceptance. We quantified these compounds in different willow species and correlated PG content with oviposition preference under lab and natural field conditions. We demonstrated a major role for contact cues in triggering N. oligospilus egg laying on the leaf surface of preferred willow genotypes. Firstly cues are sensed by antennae, determining to leave or stay on the leaf. After that, sensing is performed by abdominal cerci, which finally triggers egg laying. The lack of PGs in non-preferred species and the significant correlation observed between PGs, natural damage and oviposition preference suggest a role for these compounds in host selection. Our study suggests that in specialist feeders, secondary compounds normally acting as defenses can actually act as a susceptibility factor by triggering specific insect behavior for oviposition. These defensive compounds could be selected against to increase resistance.


Assuntos
Sinais (Psicologia) , Herbivoria , Himenópteros/fisiologia , Folhas de Planta/química , Salix/parasitologia , Animais , Antenas de Artrópodes/fisiologia , Antenas de Artrópodes/ultraestrutura , Células Quimiorreceptoras/fisiologia , Feminino , Florestas , Himenópteros/citologia , Microscopia Eletrônica de Varredura , Oviposição/fisiologia , Salix/química , Propriedades de Superfície
14.
Front Psychol ; 9: 989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038588

RESUMO

Even though innate behaviors are essential for assuring quick responses to expected stimuli, experience-dependent behavioral plasticity confers an advantage when unexpected conditions arise. As being rigidly responsive to too many stimuli can be biologically expensive, adapting preferences to time-dependent relevant environmental conditions provide a cheaper and wider behavioral reactivity. According to their specific life habits, animals prioritize different sensory modalities to maximize environment exploitation. Besides, when mediating learning processes, the salience of a stimulus usually plays a relevant role in determining the intensity of an association. Then, sensory prioritization might reflect an heterogeneity in the cognitive abilities of an individual. Here, we analyze in the kissing bug Rhodnius prolixus if stimuli from different sensory modalities generate different cognitive capacities under an operant aversive paradigm. In a 2-choice walking arena, by registering the spatial distribution of insects over an experimental arena, we evaluated firstly the innate responses of bugs confronted to mechanical (rough substrate), visual (green light), thermal (32°C heated plate), hygric (humidified substrate), gustatory (sodium chloride), and olfactory (isobutyric acid) stimuli. In further experimental series bugs were submitted to an aversive operant conditioning by pairing each stimulus with a negative reinforcement. Subsequent tests allowed us to analyze if the innate behaviors were modulated by such previous aversive experience. In our experimental setup mechanical and visual stimuli were neutral, the thermal cue was attractive, and the hygric, gustatory and olfactory ones were innately aversive. After the aversive conditioning, responses to the mechanical, the visual, the hygric and the gustatory stimuli were modulated while responses to the thermal and the olfactory stimuli remained rigid. We present evidences that the spatial learning capacities of R. prolixus are dependent on the sensory modality of the conditioned stimulus, regardless their innate valence (i.e., neutral, attractive, or aversive). These differences might be given by the biological relevance of the stimuli and/or by evolutionary aspects of the life traits of this hematophagous insect.

15.
Sci Rep ; 7(1): 15551, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138480

RESUMO

In all organisms, salts produce either appetitive or aversive responses depending on the concentration. While low-salt concentration in food elicits positive responses to ingest, high-salt triggers aversion. Still the mechanisms involved in this dual behavior have just started to be uncovered in some organisms. In Rhodnius prolixus, using pharmacological and behavioral assays, we demonstrated that upon high-salt detection in food a nitric oxide (NO) dependent cascade is activated. This activation involves a soluble guanylate cyclase (sGC) and the production of cyclic guanosine monophosphate (cGMP). Thus, appetitive responses to low-salt diets turn to aversion whenever this cascade is activated. Conversely, insects feed over aversive high-salt solutions when it is blocked by reducing NO levels or by affecting the sGC activity. The activation of NO/sGC/cGMP cascade commands the avoidance feeding behavior in R. prolixus. Investigations in other insect species should examine the possibility that high-salt aversion is mediated by NO/sSG/cGMP signaling.


Assuntos
Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Rhodnius/efeitos dos fármacos , Cloreto de Sódio/metabolismo , Animais , GMP Cíclico/química , Dieta Hipossódica , Guanilato Ciclase/química , Insetos/efeitos dos fármacos , Insetos/metabolismo , Óxido Nítrico/química , Rhodnius/química , Rhodnius/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia
16.
J Insect Physiol ; 98: 93-100, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27989677

RESUMO

Salts are necessary for maintaining homeostatic conditions within the body of all living organisms. Like with all essential nutrients, deficient or excessive ingestion of salts can result in adverse health effects. The taste system is a primary sensory modality that helps animals to make adequate feeding decisions in terms of salt consumption. In this work we show that sodium and potassium chloride salts modulate the feeding behavior of Rhodnius prolixus in a concentration-dependent manner. Feeding is only triggered by an optimal concentration of any of these salts (0.1-0.15M) and in presence of the phagostimulant ATP. Conversely, feeding solutions that do not contain salts or have a high-salt concentration (>0.3M) are not ingested by insects. Notably, we show that feeding decisions of insects cannot be explained as an osmotic effect, because they still feed over hyperosmotic solutions bearing the optimal salt concentration. Insects perceive optimal-salt, no-salt and high-salt solutions as different gustatory information, as revealed the electromyogram recordings of the cibarial pump. Moreover, because insects do a continuous gustatory monitoring of the incoming food during feeding, sudden changes beyond the optimal sodium concentration decrease and even inhibit feeding. The administration of amiloride, a sodium channel blocker, noticeably reduces the ingestion of the optimal sodium solution but not of the optimal potassium solution. Salt detection seems to occur at least through two salt receptors, one amiloride-sensitive and another amiloride-insensitive. Our results confirm the importance of the gustatory system in R. prolixus, showing the relevant role that salts play on their feeding decisions.


Assuntos
Amilorida/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Rhodnius/fisiologia , Cloreto de Sódio/farmacologia , Percepção Gustatória , Animais , Comportamento Alimentar/efeitos dos fármacos , Ninfa/efeitos dos fármacos , Ninfa/fisiologia , Rhodnius/efeitos dos fármacos , Rhodnius/crescimento & desenvolvimento
17.
J Insect Physiol ; 97: 3-19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27840287

RESUMO

Although kissing bugs (Triatominae: Reduviidae) are perhaps best known as vectors of Chagas disease, they are important experimental models in studies of insect sensory physiology, pioneered by the seminal studies of Wigglesworth and Gillet more than eighty years ago. Since then, many investigations have revealed that the thermal, hygric, visual and olfactory senses play critical roles in the orientation of these blood-sucking insects towards hosts. Here we review the current knowledge about the role of these sensory systems, focussing on relevant stimuli, sensory structures, receptor physiology and the molecular players involved in the complex and cryptic behavioural repertoire of these nocturnal insects. Odours are particularly relevant, as they are involved in host search and are used for sexual, aggregation and alarm communication. Tastants are critical for a proper recognition of hosts, food and conspecifics. Heat and relative humidity mediate orientation towards hosts and are also important for the selection of resting places. Vision, which mediates negative phototaxis and flight dispersion, is also critical for modulating shelter use and mediating escape responses. The molecular bases underlying the detection of sensory stimuli started to be uncovered by means of functional genetics due to both the recent publication of the genome sequence of Rhodnius prolixus and the availability of modern genome editing techniques.


Assuntos
Genoma de Inseto , Percepção , Rhodnius/genética , Triatominae/fisiologia , Animais , Anotação de Sequência Molecular , Percepção Olfatória , Percepção Gustatória , Percepção do Tato , Percepção Visual
18.
J Physiol Paris ; 110(3 Pt A): 99-106, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27865772

RESUMO

Animals make use of contact chemoreception structures to examine the quality of potential food sources. During this evaluation they can detect nutritious compounds that promote feeding and recognize toxins that trigger evasive behaviors. Although animals can easily distinguish between stimuli of different gustatory qualities (bitter, salty, sweet, etc.), their ability to discriminate between compounds of the same quality may be limited. Numerous plants produce alkaloids, compounds that elicit aversive behaviors in phytophagous insects and almost uniformly evoke a bitter taste for man. In hematophagous insects, however, the effect of feeding deterrent molecules has been barely studied. Recent studies showed that feeding in Rhodnius prolixus can be negatively modulated by the presence of alkaloids such as quinine (QUI) and caffeine (CAF), compounds that elicit similar aversive responses. Here, we applied associative and non-associative learning paradigms to examine under two behavioral contexts the ability of R. prolixus to distinguish, discriminate and/or generalize between these two bitter compounds, QUI and CAF. Our results show that bugs innately repelled by bitter compounds can change their behavior from avoidance to indifference or even to preference according to their previous experiences. After an aversive operant conditioning with QUI or CAF, R. prolixus modified its behavior in a direct but also in a cross-compound manner, suggesting the occurrence of a generalization process between these two alkaloids. Conversely, after a long pre-exposure to each alkaloid, bugs decreased their avoidance to the compound used during pre-exposure but still expressed an avoidance of the novel compound, proving that QUI and CAF are detected separately. Our results suggest that R. prolixus is able to discriminate between QUI and CAF, although after an associative conditioning they express a symmetrical cross-generalization. This kind of studies adds insight into the gustatory sense of a blood-sucking model but also into the learning abilities of hematophagous insects.


Assuntos
Aprendizagem/fisiologia , Rhodnius/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Cafeína , Condicionamento Psicológico , Quinina , Paladar
19.
Annu Rev Entomol ; 61: 317-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982441

RESUMO

In insects, olfaction plays a crucial role in many behavioral contexts, such as locating food, sexual partners, and oviposition sites. To successfully perform such behaviors, insects must respond to chemical stimuli at the right moment. Insects modulate their olfactory system according to their physiological state upon interaction with their environment. Here, we review the plasticity of behavioral responses to different odor types according to age, feeding state, circadian rhythm, and mating status. We also summarize what is known about the underlying neural and endocrinological mechanisms, from peripheral detection to central nervous integration, and cover neuromodulation from the molecular to the behavioral level. We describe forms of olfactory plasticity that have contributed to the evolutionary success of insects and have provided them with remarkable tools to adapt to their ever-changing environment.


Assuntos
Plasticidade Celular , Insetos/fisiologia , Plasticidade Neuronal , Percepção Olfatória , Olfato , Animais
20.
J Exp Biol ; 217(Pt 20): 3708-17, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25189371

RESUMO

The gustatory system of animals is involved in food quality assessment and controls the feeding decision of an individual confronted with a potential alimentary source. Triatomines are haematophagous insects that feed on vertebrate blood. Once they reach a potential host, they walk over the host skin searching for an adequate site to pierce. Then, they insert their stylets and take a first sampling gorge to decide whether food is acceptable. Our work reveals that the presence of bitter compounds inhibits the feeding behavior of these bugs. Firstly, triatomines decreased their feeding behavior if substrates spread with quinine or caffeine were detected by external receptors localized exclusively in the antennae. Morphological inspections along with electrophysiological recordings revealed the existence of four gustatory sensilla located in the tip of the antenna that respond to both bitter tastants. The absence of these bitter detectors by antennal ablation reversed the observed feeding inhibition evoked by bitter compounds. Secondly, once triatomines pumped the first volume of food with bitter compounds (quinine, caffeine, berberine, salicin), a decrease in their feeding behavior was observed. Morphological inspections revealed the existence of eight gustatory sensilla located in the pharynx that might be responsible for the internal bitter detection. Finally, we found that a brief pre-exposure to bitter compounds negatively modulates the motivation of bugs to feed on an appetitive solution. Results presented here highlight the relevance of bitter taste perception in the modulation of the feeding behavior of a blood-sucking insect.


Assuntos
Rhodnius/fisiologia , Sensilas/fisiologia , Paladar/fisiologia , Alcaloides , Animais , Antenas de Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Álcoois Benzílicos , Ingestão de Alimentos/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Comportamento Alimentar/fisiologia , Glucosídeos , Inibição Psicológica , Larva/efeitos dos fármacos , Larva/fisiologia , Larva/ultraestrutura , Parasitos , Rhodnius/efeitos dos fármacos , Rhodnius/ultraestrutura , Sensilas/ultraestrutura , Paladar/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...